Introduction to Thermodynamics: Transferring Energy from Here to There

Type product
Logo van Coursera (CC)
Opleiderscore: starstarstarstar_halfstar_border 7,2 Coursera (CC) heeft een gemiddelde beoordeling van 7,2 (uit 6 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Beschrijving

When you enroll for courses through Coursera you get to choose for a paid plan or for a free plan

  • Free plan: No certicification and/or audit only. You will have access to all course materials except graded items.
  • Paid plan: Commit to earning a Certificate—it's a trusted, shareable way to showcase your new skills.

About this course: COURSE DESCRIPTION This course provides an introduction to the most powerful engineering principles you will ever learn - Thermodynamics: the science of transferring energy from one place or form to another place or form. We will introduce the tools you need to analyze energy systems from solar panels, to engines, to insulated coffee mugs. More specifically, we will cover the topics of mass and energy conservation principles; first law analysis of control mass and control volume systems; properties and behavior of pure substances; and applications to thermodynamic systems operating at steady state conditions. COURSE FORMAT The class consists of lecture videos, which a…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Duurzaam ondernemen, Ondernemen, Duurzame energie / Energietransitie, Zonnepanelen en Circulaire Economie.

When you enroll for courses through Coursera you get to choose for a paid plan or for a free plan

  • Free plan: No certicification and/or audit only. You will have access to all course materials except graded items.
  • Paid plan: Commit to earning a Certificate—it's a trusted, shareable way to showcase your new skills.

About this course: COURSE DESCRIPTION This course provides an introduction to the most powerful engineering principles you will ever learn - Thermodynamics: the science of transferring energy from one place or form to another place or form. We will introduce the tools you need to analyze energy systems from solar panels, to engines, to insulated coffee mugs. More specifically, we will cover the topics of mass and energy conservation principles; first law analysis of control mass and control volume systems; properties and behavior of pure substances; and applications to thermodynamic systems operating at steady state conditions. COURSE FORMAT The class consists of lecture videos, which average 8 to 12 minutes in length. The videos include integrated In-Video Quiz questions. There are also quizzes at the end of each section, which include problems to practice your analytical skills that are not part of video lectures. There are no exams. GRADING POLICY Each question is worth 1 point. A correct answer is worth +1 point. An incorrect answer is worth 0 points. There is no partial credit. You can attempt each quiz up to three times every 8 hours, with an unlimited number of total attempts. The number of questions that need to be answered correctly to pass are displayed at the beginning of each quiz. Following the Mastery Learning model, students must pass all 8 practice quizzes with a score of 80% or higher in order to complete the course. ESTIMATED WORKLOAD If you follow the suggested deadlines, lectures and quizzes will each take approximately ~3 hours per week each, for a total of ~6 hours per week. TARGET AUDIENCE Basic undergraduate engineering or science student. FREQUENTLY ASKED QUESTIONS - What are the prerequisites for taking this course? An introductory background (high school or first year college level) in chemistry, physics, and calculus will help you be successful in this class. -What will this class prepare me for in the academic world? Thermodynamics is a prerequisite for many follow-on courses, like heat transfer, internal combustion engines, propulsion, and gas dynamics, to name a few. -What will this class prepare me for in the real world? Energy is one of the top challenges we face as a global society. Energy demands are deeply tied to the other major challenges of clean water, health, food resources, and poverty. Understanding how energy systems work is key to understanding how to meet all these needs around the world. Because energy demands are only increasing, this course also provides the foundation for many rewarding professional careers.

Created by:  University of Michigan
  • Taught by:  Margaret Wooldridge, Ph.D., Arthur F. Thurnau Professor

    Mechanical Engineering, Aerospace Engineering
Level Beginner Commitment 12 hours of videos and quizzes Language English How To Pass Pass all graded assignments to complete the course. User Ratings 4.7 stars Average User Rating 4.7See what learners said Coursework

Each course is like an interactive textbook, featuring pre-recorded videos, quizzes and projects.

Help from your peers

Connect with thousands of other learners and debate ideas, discuss course material, and get help mastering concepts.

Certificates

Earn official recognition for your work, and share your success with friends, colleagues, and employers.

University of Michigan The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future.

Syllabus


WEEK 1


Week 1



In this module, we frame the context of energy and power supply and demand around the world. You will learn that understanding and correctly using units are critical skills for successfully analyzing energy systems. It is also important to be able to identify and categorize systems as “open” or “closed” and “steady state” or “transient”. Thermodynamics is a topic that is very notation intense, but the notation is very helpful as a check on our assumptions and our mathematics. Additionally, in this module we will refresh our understanding of some common thermodynamic properties.


6 videos, 1 reading expand


  1. Video: 01.01 - Welcome and Introduction to the Course
  2. Reading: Help us learn more about you!
  3. Video: 01.02 - Drivers for Changing the Way We Use Energy
  4. Video: 01.03 - The Units of Energy and Power and the Sectors of Energy Supply and Demand
  5. Video: 01.04 - Defining Open and Closed Systems
  6. Video: 01.05 - Thermodynamic Properties
  7. Video: 01.06 - Conservation of Energy for Closed Systems

Graded: Week 1

WEEK 2


Week 2



In this module, we will get started with the fundamental definitions for energy transfer, including the definitions of work transfer and heat transfer. We will also show (by example) how state diagrams are valuable for explaining energy transfer processes. Then, we have all the tools we need to define the 1st Law of Thermodynamics also called the Conservation of Energy. Your second assignment will emphasize these principles and skills.


6 videos expand


  1. Video: 02.01 - Work Transfer Mechanisms
  2. Video: 02.02 - Example: the Work Required to Compress Air
  3. Video: 02.03 - The First Law of Thermodynamics for a Closed System
  4. Video: 02.04 - Heat Transfer
  5. Video: 02.05 - Phase Diagrams
  6. Video: 02.06 - 2D Phase Diagrams

Graded: Week 2

WEEK 3


Week 3



In this module, we introduce our first abstract concepts of thermodynamics properties – including the specific heats, internal energy, and enthalpy. It will take some time for you to become familiar with what these properties represent and how we use these properties. For example, internal energy and enthalpy are related to temperature and pressure, but they are two distinct thermodynamic properties. One of the hardest concepts of thermodynamics is relating the independent thermodynamic properties to each other. We have to become experts at these state relations in order to be successful in our analysis of energy systems. There are several common approximations, including the ideal gas model, which we will use in this class. The key to determining thermodynamic properties is practice, practice, practice! Do as many examples as you can.


6 videos expand


  1. Video: 03.01 - Thermodynamic Properties and the Saturation Region
  2. Video: 03.02 - Internal Energy, Enthalpy, and the Specific Heats
  3. Video: 03.03 - The Incompressible Substance and the Ideal Gas Models for Equations of State
  4. Video: 03.04 - Outcomes of the Ideal Gas Model
  5. Video: 03.05 - Conservation of Mass for Open Systems
  6. Video: 03.06 - Steam Turbine Example - Part 1

Graded: Week 3

WEEK 4


Week 4



In this module we introduce the combined application of the Conservation of Mass and the Conservation of Energy for system analysis. We also review the common assumptions for typical energy transfer devices, like heat exchangers, pumps and turbines. Together these components will form the basis for all power plants used around the world.


6 videos expand


  1. Video: 04.01 - Flow Work and the Conservation of Energy
  2. Video: 04.02 - Steady State, Steady Flow Devices
  3. Video: 04.03 - Another Example: Compressing Water
  4. Video: 04.04 - Steam Turbine Example - Part 2
  5. Video: 04.05 - Example of Cooling a Microprocessor - Starting the Analysis
  6. Video: 04.06 - Steam Tables Discussion

Graded: Week 4

WEEK 5


Week 5



In this module, we tackle some of the most difficult systems to analyze – transient or time-varying systems. Any system where the energy transfer changes as a function of time requires transient analysis. Not only are these difficult problems to analyze, they are also difficult systems to design and interrogate. Some important transient problems include the start-up of a gas turbine or an internal combustion engine. Such transients are becoming more integral to the electrical power grid due to the introduction of more renewable power sources which are also more intermittent. These are very relevant and timely topics for the stationary power sector.


5 videos expand


  1. Video: 05.01 - Example of Cooling a Microprocessor - Finishing the Analysis
  2. Video: 05.02 - Transient Analysis - Setting Up the Governing Equations
  3. Video: 05.03 - Transient Analysis - Reformulating the Problem
  4. Video: 05.04 - Cycle Analysis - Power Cycles
  5. Video: 05.05 - Refrigeration and Heat Pump Cycles

Graded: Week 5

WEEK 6


Week 6



In this module, we introduce some of the concepts of the Second Law of Thermodynamics. We will only discuss a small fraction of the vast material that falls under the topic of the Second Law. I encourage you to explore beyond our course material for very interesting discussions on the outcomes of the Second Law which include entropy, the absolute temperature scale and Carnot cycles. The most important aspect for our class, is that the Second Law provides a basis for defining the theoretical maximums and minimums for processes. Using these limits, we can define device and system efficiencies. We demonstrate these limits with examples of basic power plants. A good “take-home” exercise is to apply these limits to some of the devices and systems you see every day around you.


6 videos expand


  1. Video: 06.01 - A Conceptual Introduction to the Second Law of Thermodynamics
  2. Video: 06.02 - The Carnot Cycle
  3. Video: 06.03 - The Rankine Power Plant
  4. Video: 06.04 - A Brief Introduction to Ideal Performance and Entropy
  5. Video: 06.05 - Advanced Methods to Increase the Efficiency of Rankine Power Plants
  6. Video: 06.06 - Discussion on the Concepts and Theory of the 2nd Law of Thermodynamics

Graded: Week 6

WEEK 7


Week 7



In this module we focus on in-depth analysis of a Rankine power plant. The Rankine power plant is the fundamental design for stationary power generation when the working fluid is water (or steam) and the energy carrier is nuclear, coal, gas, or thermal solar power. We also learn that conventional power plants generate a lot of waste heat! Co-generation is a great way to use that waste heat. Can you think of a few ways you might capture waste heat and use it productively? Then you might have your next environmentally sustainable business venture!


6 videos expand


  1. Video: 07.01 - Example of Analysis of a Rankine Power Plant - Part 1: Assigning the State Information (or Pin the Tail on the Donkey)
  2. Video: 07.02 - Example of Analysis of a Rankine Power Plant - Part 2: Finding ALL the State Information
  3. Video: 07.03 - Example of Analysis of a Rankine Power Plant - Part 3: Putting it all Together, Cycle Analysis
  4. Video: 07.04 - Example of Analysis of a Rankine Power Plant - Part 4: What the Results Tell Us
  5. Video: 07.05 - How we can Dramatically Improve Thermal Efficiencies - An Introduction to Waste Heat Recovery
  6. Video: 07.06 - Let's Look Inside a Jet Engine

Graded: Week 7

WEEK 8


Week 8



In this module, we have a brief discussion of energy carriers – including fossil fuels and battery materials. These lectures highlight the thermodynamic properties of these energy carriers and storage materials that make these systems so attractive and at the same time, so difficult to replace. As this is our last module of the course, I hope you have enjoyed this Introduction to Thermodynamics and that you have learned some new skills. Good luck on all your adventures in energy systems!,


6 videos, 1 reading expand


  1. Video: 08.01 - Air Standard Power Cycles - The Brayton Cycle
  2. Video: 08.02 - Waste Heat Recovery - Combined Cycles
  3. Video: 08.03 - Carbon Reserves and Global Warming
  4. Video: 08.04 -Energy Carriers
  5. Video: 08.05 - Setting the Bar for Performance
  6. Video: 08.06 -The Hardware of Our Internal Combustion Engines
  7. Reading: Post-course Survey

Graded: Week 8

Blijf op de hoogte van nieuwe ervaringen

Er zijn nog geen ervaringen.

Deel je ervaring

Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

Aanhef
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)
We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.