Advanced Statistical Analysis Using IBM SPSS Statistics (V25) SPVC

Type product
Logo van Global Knowledge BV: E-learnings & Subscriptions

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Beschrijving

Overview

This course provides an application-oriented introduction to advanced statistical methods available in IBM SPSS Statistics. Students will review a variety of advanced statistical techniques and discuss situations in which each technique would be used, the assumptions made by each method, how to set up the analysis, and how to interpret the results. This includes a broad range of techniques for predicting variables, as well as methods to cluster variables and cases.

Objectives

In this course, you will discover:

  • Introduction to advanced statistical analysis
  • Group variables: Factor Analysis and Principal Components Analysis
  • Group similar cases: Cluster Analysis
  • Predict categorical tar…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: SPSS, Statistiek, IBM (overzicht), Bedrijfsstatistiek en Excel.

Overview

This course provides an application-oriented introduction to advanced statistical methods available in IBM SPSS Statistics. Students will review a variety of advanced statistical techniques and discuss situations in which each technique would be used, the assumptions made by each method, how to set up the analysis, and how to interpret the results. This includes a broad range of techniques for predicting variables, as well as methods to cluster variables and cases.

Objectives

In this course, you will discover:

  • Introduction to advanced statistical analysis
  • Group variables: Factor Analysis and Principal Components Analysis
  • Group similar cases: Cluster Analysis
  • Predict categorical targets with Nearest Neighbor Analysis
  • Predict categorical targets with Discriminant Analysis
  • Predict categorical targets with Logistic Regression
  • Predict categorical targets with Decision Trees
  • Introduction to Survival Analysis
  • Introduction to Generalized Linear Models
  • Introduction to Linear Mixed Models
ContentIntroduction to advanced statistical analysis
  • Taxonomy of models
  • Overview of supervised models
  • Overview of models to create natural groupings
Group variables: Factor Analysis and Principal Components Analysis
  • Factor Analysis basics
  • Principal Components basics
  • Assumptions of Factor Analysis
  • Key issues in Factor Analysis
  • Improve the interpretability
  • Use Factor and component scores
Group similar cases: Cluster Analysis
  • Cluster Analysis basics
  • Key issues in Cluster Analysis
  • K-Means Cluster Analysis
  • Assumptions of K-Means Cluster Analysis
  • TwoStep Cluster Analysis
  • Assumptions of TwoStep Cluster Analysis
Predict categorical targets with Nearest Neighbor Analysis
  • Nearest Neighbor Analysis basics
  • Key issues in Nearest Neighbor Analysis
  • Assess model fit
Predict categorical targets with Discriminant Analysis
  • Discriminant Analysis basics
  • The Discriminant Analysis model
  • Core concepts of Discriminant Analysis
  • Classification of cases
  • Assumptions of Discriminant Analysis
  • Validate the solution
Predict categorical targets with Logistic Regression
  • Binary Logistic Regression basics
  • The Binary Logistic Regression model
  • Multinomial Logistic Regression basics
  • Assumptions of Logistic Regression procedures
  • Testing hypotheses
Predict categorical targets with Decision Trees
  • Decision Trees basics
  • Validate the solution
  • Explore CHAID
  • Explore CRT
  • Comparing Decision Trees methods
Introduction to Survival Analysis
  • Survival Analysis basics
  • Kaplan-Meier Analysis
  • Assumptions of Kaplan-Meier Analysis
  • Cox Regression
  • Assumptions of Cox Regression
Introduction to Generalized Linear Models
  • Generalized Linear Models basics
  • Available distributions
  • Available link functions
Introduction to Linear Mixed Models
  • Linear Mixed Models basics
  • Hierachical Linear Models
  • modeling strategy
  • Assumptions of Linear Mixed Models
PreRequisites

Before this course, you should have :

  • Experience with IBM SPSS Statistics (navigation through windows; using dialog boxes)
  • Knowledge of statistics, either by on the job experience, intermediate-level statistics oriented courses, or completion of the Statistical Analysis Using IBM SPSS Statistics (V25) course.

Blijf op de hoogte van nieuwe ervaringen

Er zijn nog geen ervaringen.

Deel je ervaring

Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

Aanhef
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)
We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.