Apache Spark Fundamentals

Tijdsduur
Locatie
Op locatie
Startdatum en plaats

Apache Spark Fundamentals

Info Support
Logo van Info Support
Opleiderscore: starstarstarstarstar_border 8,3 Info Support heeft een gemiddelde beoordeling van 8,3 (uit 15 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
placeVeenendaal
18 feb. 2026 tot 19 feb. 2026
Toon rooster
event 18 februari 2026, 09:00-16:00, Veenendaal
event 19 februari 2026, 09:00-16:00, Veenendaal
Beschrijving

Meer weten over de onderwerpen die aan bod komen en de vereiste voorkennis? Neem vrijblijvend contact met ons op.

Get started processing data with Apache Spark and PySpark

Description

With the rise of cloud computing, distributed storage and (big) data processing, many organisations are starting to use Apache Spark for their data processes. Whether it is for data science, data analysis or data engineering, Apache Spark can be the right tool for the job. It is a foundation under Azure Synapse Analytics, Microsoft Fabric and Databricks.

This training aims to walk you through the fundamentals of working with Apache Spark, starting with what it is and how it works. You will then continue to read, transform and write data using PySpark.

Finally, to make sure your code can be safely used in production, there …

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Apache Spark, Apache, Apache Hadoop, Scala en Splunk.

Meer weten over de onderwerpen die aan bod komen en de vereiste voorkennis? Neem vrijblijvend contact met ons op.

Get started processing data with Apache Spark and PySpark

Description

With the rise of cloud computing, distributed storage and (big) data processing, many organisations are starting to use Apache Spark for their data processes. Whether it is for data science, data analysis or data engineering, Apache Spark can be the right tool for the job. It is a foundation under Azure Synapse Analytics, Microsoft Fabric and Databricks.

This training aims to walk you through the fundamentals of working with Apache Spark, starting with what it is and how it works. You will then continue to read, transform and write data using PySpark.

Finally, to make sure your code can be safely used in production, there will be an added focus on using development best practices.

Subjects

1: About Spark

What is Spark, where did it come from, why was it created? And how does it work?

Lessons

  • History of Apache Spark
  • Technical Architecture (Driver, Cluster Manager, Executors)
  • RDD and Dataframe
  • Pyspark
  • Benefits of using Spark
  • Running Spark locally

After completing this module, students will be able to:

  • Explain how Spark works
2: Reading Data

To work with data, we first need to retrieve it from wherever it is located. This is done through spark.read.

Lessons

  • spark.read
  • read options
  • read modes
  • Using regex in the filepath(s)

Lab

  • Read your first files in Spark

After completing this module, students will be able to:

  • Read data using PySpark
3: Transforming Data

After retrieving our data we need to perform transformations on it. Operations such as joins, filters, grouping, aggregating, splitting and renaming are necessary in most data pipelines. How do they work in Spark?

Lessons

  • Filtering
  • Narrow and broad transformations
  • Column operations
  • JSON transformations
  • Window functions
  • UDF and Lambdas

Lab

  • Perform transformations with PySpark

After completing this module, students will be able to:

  • Transform data using PySpark
4: Writing Data

After completing the necessary transformations in memory, it is time to write our data to our target location. This may sound like a plain operation, but there are things to consider such as file formats and partitioning.

Lessons

  • Common file formats
  • Apache Parquet
  • Delta Lake
  • Data partitioning
  • Bucketing

Lab

  • Write data with PySpark, with partitions and buckets

After completing this module, students will be able to:

  • Write data using PySpark
5: Development Best Practices

All we need to do with data is reading, transforming and writing it. But the code we use to do that needs to be maintained. For this, we need to use development best practices. Some of them are general, others are specific to Apache Spark.

Lessons

  • Notebooks for Development, python files for production
  • Modularization
  • Logging
  • Error Handling
  • Testing
  • Continuous Integration

Lab

  • Read, clean, transform and write data using development best practices for production ready code

After completing this module, students will be able to:

  • Write PySpark code following development best practices
Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)

Aanmelden voor nieuwsbrief

We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.