Generative AI: Introduction and Overview eLearning
Verdiep je in Generatieve AI met 13+ uur eLearning en een praktijkproject - leer deep learning, ethiek en bouw je eigen AI-model voor echte impact in jouw branche.
Deze eLearning biedt een uitgebreide introductie tot het vakgebied van Generatieve AI. Je begint met de basis en verkent de toepassingen, kernconcepten en deep learning-technieken van Generatieve AI. Vervolgens worden complexere onderwerpen behandeld, zoals geavanceerde methodologieën en ethische vraagstukken. De serie wordt afgesloten met een praktijkproject, waarbij je je opgedane kennis toepast om zelf een Generatieve AI-model te bouwen, wat zorgt voor een praktische leerervaring.
Deze leerreis is geschikt voor een breed scala…
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Verdiep je in Generatieve AI met 13+ uur eLearning en een praktijkproject - leer deep learning, ethiek en bouw je eigen AI-model voor echte impact in jouw branche.
Deze eLearning biedt een uitgebreide introductie tot het
vakgebied van Generatieve AI. Je begint met de basis en verkent de
toepassingen, kernconcepten en deep learning-technieken van
Generatieve AI. Vervolgens worden complexere onderwerpen behandeld,
zoals geavanceerde methodologieën en ethische vraagstukken. De
serie wordt afgesloten met een praktijkproject, waarbij je je
opgedane kennis toepast om zelf een Generatieve AI-model te bouwen,
wat zorgt voor een praktische leerervaring.
Deze leerreis is geschikt voor een breed scala aan deelnemers, van
datawetenschappers en IT-managers tot nieuwkomers in het AI-veld,
ongeacht hun locatie. Het programma is ontworpen voor professionals
die hun kennis van Generatieve AI willen verdiepen en de
mogelijkheden ervan willen benutten binnen hun branche, wat zowel
persoonlijke als organisatorische groei ondersteunt.
* 12 Months Online Access
* 13+ hours of eLearning
* 1 Assessment
* 8 courses
The "Generative AI: Introduction and Overview" learning provides
an introduction to the field of Generative AI. Beginning with the
basics, learners will explore the applications, key concepts, and
deep learning techniques of Generative AI, progressing towards more
complex topics like advanced methodologies and ethical issues. The
series ends in a practical project where learners can apply their
acquired knowledge to build a Generative AI model, providing a
hands-on experience that reinforces theoretical learning.Designed
to cater to a diverse range of learners, this educational journey
is ideal for anyone from data scientists and IT managers to
newcomers in the AI field across different geographies. This
journey is suited for professionals looking to deepen their
understanding of Generative AI and leverage its capabilities within
their respective industries, enhancing both their personal and
organizational growth.
Generative AI Overview
In this track, the focus will be on applications, key concepts, and
deep learning techniques of Generative AI, progressing towards more
complex topics like advanced methodologies and ethical issues. The
series ends in a practical project where learners can apply their
acquired knowledge to build a Generative AI model, providing a
hands-on experience that reinforces theoretical learning.
* An Introduction to Generative AIYou'll begin this course with an
overview of generative. You will explore some notable examples of
generative models, including OpenAI's ChatGPT and Google Bard.
Next, you will look at the use of prompt engineering when
interacting with AI chatbots. Then, you will then delve into the
history and evolution of generative AI models including important
milestones that culminated in the conversational agents that we
work with today.
* Generative AI Models: Getting Started with AutoencodersBegin this
course off by exploring autoencoders, learning about the functions
of the encoder and the decoder in the model. Next, you will learn
how to create and train an autoencoder, using the Google Colab
environment. Then you will use PyTorch to create the neural
networks for the autoencoder, and you will train the model to
reconstruct high-dimensional, grayscale images.
* Generative AI Models: Generating Data Using Variational
AutoencodersBegin this course by discovering how variational
autoencoders can be used for generating images. Next, you will
create and train VAEs in Python and the Google Colab environment.
Then you will construct the encoder and decoder. Finally, you will
train the VAE on multichannel color images.
* Generative AI Models: Generating Data Using Generative
Adversarial NetworksBegin this course by discovering GANs,
including the basic architecture of a GAN, which involves two
neural networks competing in a zero-sum game – the generator and
the discriminator. Next, you will explore how to construct and
train a GAN using PyTorch framework to create and train the models.
You'll define the generator and discriminator separately, and then
kick off the model training.
* Using OpenAI APIs: Exploring APIs with the OpenAI PlaygroundYou
will start this course by exploring the fundamentals of OpenAI
models. Next, you will log into the OpenAI Playground and input
basic prompts, observing the responses. You will work with multiple
application programming interfaces (APIs), including the
recommended chat completions API and the legacy completions API,
all of which are accessible via the playground.
* Using OpenAI APIs: Accessing OpenAI APIs from PythonStart this
course by engaging with OpenAI through the command-line, utilizing
the OpenAI APIs. Learn how to authenticate yourself using API keys
when programmatically accessing API endpoints using cURL commands.
You will explore how to configure context for past interactions
with the model and access both chat completions and legacy
completions APIs via their respective endpoints.
* Using OpenAI APIs: Using Image & Audio APIsYou will begin
this course by generating images using OpenAI's DALL-E model. You
will generate images using text prompts, create variations of
existing images, and perform image inpainting using natural
language. Then, you will work with the Whisper model, which caters
to speech transcription and translation.
* Using OpenAI APIs: Fine-tuning Models, the Assistants API, &
Embeddings.Begin this course by creating prompt-completion pairs
for fine-tuning, running a fine-tuning job, and observing the
model's performance. You will send prompts based on the training
data and examine the model's attempt to answer questions. Next, you
will dive into connecting with the Assistants API
programmatically.
* Assessment:Final Exam: Generative AI Introduction and
Overview
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
