Data Analysis with Python
placeAmsterdam 16 feb. 2026 tot 19 feb. 2026Toon rooster event 16 februari 2026, 09:30-16:30, Amsterdam, Dag 1 event 17 februari 2026, 09:30-16:30, Amsterdam, Dag 2 event 18 februari 2026, 09:30-16:30, Amsterdam, Dag 3 event 19 februari 2026, 09:30-16:30, Amsterdam, Dag 4 |
placeEindhoven 16 feb. 2026 tot 19 feb. 2026Toon rooster event 16 februari 2026, 09:30-16:30, Eindhoven, Dag 1 event 17 februari 2026, 09:30-16:30, Eindhoven, Dag 2 event 18 februari 2026, 09:30-16:30, Eindhoven, Dag 3 event 19 februari 2026, 09:30-16:30, Eindhoven, Dag 4 |
placeHouten 16 feb. 2026 tot 19 feb. 2026Toon rooster event 16 februari 2026, 09:30-16:30, Houten, Dag 1 event 17 februari 2026, 09:30-16:30, Houten, Dag 2 event 18 februari 2026, 09:30-16:30, Houten, Dag 3 event 19 februari 2026, 09:30-16:30, Houten, Dag 4 |
computer Online: Online 16 feb. 2026 tot 19 feb. 2026Toon rooster event 16 februari 2026, 09:30-16:30, Online, Dag 1 event 17 februari 2026, 09:30-16:30, Online, Dag 2 event 18 februari 2026, 09:30-16:30, Online, Dag 3 event 19 februari 2026, 09:30-16:30, Online, Dag 4 |
placeRotterdam 16 feb. 2026 tot 19 feb. 2026Toon rooster event 16 februari 2026, 09:30-16:30, Rotterdam, Dag 1 event 17 februari 2026, 09:30-16:30, Rotterdam, Dag 2 event 18 februari 2026, 09:30-16:30, Rotterdam, Dag 3 event 19 februari 2026, 09:30-16:30, Rotterdam, Dag 4 |
placeZwolle 16 feb. 2026 tot 19 feb. 2026Toon rooster event 16 februari 2026, 09:30-16:30, Zwolle, Dag 1 event 17 februari 2026, 09:30-16:30, Zwolle, Dag 2 event 18 februari 2026, 09:30-16:30, Zwolle, Dag 3 event 19 februari 2026, 09:30-16:30, Zwolle, Dag 4 |
placeAmsterdam 13 apr. 2026 tot 16 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Amsterdam, Dag 1 event 14 april 2026, 09:30-16:30, Amsterdam, Dag 2 event 15 april 2026, 09:30-16:30, Amsterdam, Dag 3 event 16 april 2026, 09:30-16:30, Amsterdam, Dag 4 |
placeEindhoven 13 apr. 2026 tot 16 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Eindhoven, Dag 1 event 14 april 2026, 09:30-16:30, Eindhoven, Dag 2 event 15 april 2026, 09:30-16:30, Eindhoven, Dag 3 event 16 april 2026, 09:30-16:30, Eindhoven, Dag 4 |
placeHouten 13 apr. 2026 tot 16 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Houten, Dag 1 event 14 april 2026, 09:30-16:30, Houten, Dag 2 event 15 april 2026, 09:30-16:30, Houten, Dag 3 event 16 april 2026, 09:30-16:30, Houten, Dag 4 |
computer Online: Online 13 apr. 2026 tot 16 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Online, Dag 1 event 14 april 2026, 09:30-16:30, Online, Dag 2 event 15 april 2026, 09:30-16:30, Online, Dag 3 event 16 april 2026, 09:30-16:30, Online, Dag 4 |
placeRotterdam 13 apr. 2026 tot 16 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Rotterdam, Dag 1 event 14 april 2026, 09:30-16:30, Rotterdam, Dag 2 event 15 april 2026, 09:30-16:30, Rotterdam, Dag 3 event 16 april 2026, 09:30-16:30, Rotterdam, Dag 4 |
placeZwolle 13 apr. 2026 tot 16 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Zwolle, Dag 1 event 14 april 2026, 09:30-16:30, Zwolle, Dag 2 event 15 april 2026, 09:30-16:30, Zwolle, Dag 3 event 16 april 2026, 09:30-16:30, Zwolle, Dag 4 |
placeAmsterdam 15 jun. 2026 tot 18 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Amsterdam, Dag 1 event 16 juni 2026, 09:30-16:30, Amsterdam, Dag 2 event 17 juni 2026, 09:30-16:30, Amsterdam, Dag 3 event 18 juni 2026, 09:30-16:30, Amsterdam, Dag 4 |
placeEindhoven 15 jun. 2026 tot 18 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Eindhoven, Dag 1 event 16 juni 2026, 09:30-16:30, Eindhoven, Dag 2 event 17 juni 2026, 09:30-16:30, Eindhoven, Dag 3 event 18 juni 2026, 09:30-16:30, Eindhoven, Dag 4 |
placeHouten 15 jun. 2026 tot 18 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Houten, Dag 1 event 16 juni 2026, 09:30-16:30, Houten, Dag 2 event 17 juni 2026, 09:30-16:30, Houten, Dag 3 event 18 juni 2026, 09:30-16:30, Houten, Dag 4 |
computer Online: Online 15 jun. 2026 tot 18 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Online, Dag 1 event 16 juni 2026, 09:30-16:30, Online, Dag 2 event 17 juni 2026, 09:30-16:30, Online, Dag 3 event 18 juni 2026, 09:30-16:30, Online, Dag 4 |
placeRotterdam 15 jun. 2026 tot 18 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Rotterdam, Dag 1 event 16 juni 2026, 09:30-16:30, Rotterdam, Dag 2 event 17 juni 2026, 09:30-16:30, Rotterdam, Dag 3 event 18 juni 2026, 09:30-16:30, Rotterdam, Dag 4 |
placeZwolle 15 jun. 2026 tot 18 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Zwolle, Dag 1 event 16 juni 2026, 09:30-16:30, Zwolle, Dag 2 event 17 juni 2026, 09:30-16:30, Zwolle, Dag 3 event 18 juni 2026, 09:30-16:30, Zwolle, Dag 4 |
placeAmsterdam 10 aug. 2026 tot 13 aug. 2026Toon rooster event 10 augustus 2026, 09:30-16:30, Amsterdam, Dag 1 event 11 augustus 2026, 09:30-16:30, Amsterdam, Dag 2 event 12 augustus 2026, 09:30-16:30, Amsterdam, Dag 3 event 13 augustus 2026, 09:30-16:30, Amsterdam, Dag 4 |
placeEindhoven 10 aug. 2026 tot 13 aug. 2026Toon rooster event 10 augustus 2026, 09:30-16:30, Eindhoven, Dag 1 event 11 augustus 2026, 09:30-16:30, Eindhoven, Dag 2 event 12 augustus 2026, 09:30-16:30, Eindhoven, Dag 3 event 13 augustus 2026, 09:30-16:30, Eindhoven, Dag 4 |
Python Overview
The course Data Analysis with Python starts with a bird's eye view of the Python syntax aspects that are important in Data Analysis projects. Variables, data types, functions, flow control, comprehensions, classes, modules and packages are discussed. The operation of the Jupyter notebooks, the IPython shell and installing Python packages in Anaconda are also treated.
Numpy
Next the course Data Analysis with Python pays attention to the NumPy package with which large data sets can be processed very efficiently. NumPy's ndarray object and its met…

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Python Overview
The course Data Analysis with Python starts with a bird's eye view of the Python syntax aspects that are important in Data Analysis projects. Variables, data types, functions, flow control, comprehensions, classes, modules and packages are discussed. The operation of the Jupyter notebooks, the IPython shell and installing Python packages in Anaconda are also treated.
Numpy
Next the course Data Analysis with Python pays attention to the NumPy package with which large data sets can be processed very efficiently. NumPy's ndarray object and its methods are treated and attention is paid to the different array manipulation techniques with broadcasting and vectorized operations.
Pandas
Then use of the Pandas library for data analysis is on the schedule of the course Data Analysis with Python. The pandas library introduces two new data structures in Python that use Numpy and are therefore fast. The data structures are DataFrame and Series and extensive details are given on how to use them for data analysis when inspecting, selecting, filtering, combining and grouping data.
MatPlotLib
Also discussed in the course Data Analysis with Python is the MatPlotlib library, which is closely integrated with NumPy and is a very powerful tool for creating and plotting complex data relationships.
Scikit-Learn
Finally attention is paid to the essentials of the Scikit-Learn library for modeling. The course Data Analysis with Python uses many practical examples and shows how one- and two- and three-dimensional data sets can be visualized.
Audience Course Data Analyse with Python
The course Data Analysis with Python is intended for data analysts who want to use Python and the Python libraries in Data Analysis projects.
Prerequisites training Data Analyse with Python
To participate in this course knowledge of and experience with any programming language or package such as SPSS, Matlab or VBA is desirable. The course starts with a discussion of the principles of the Python programming language.
Realization course Data Analyse with Python
The theory is discussed on the basis of presentation slides. Illustrative demos clarify the concepts. The theory is interchanged with exercises. The Anaconda distribution with Jupyter notebooks is used as a development environment. Course times are from 9:30 to 16:30.
Official Certificate Data Analysis with Python
After successful completion of the course participants receive an official certificate Data Analysis with Python.
Modules
Module 1 : Python Language Syntax
- Python Features
- Running Python
- Anaconda Distribution
- IPython Shell
- Interactive and Script Mode
- Python Data Types
- Numbers and Strings
- Sequences and Lists
- Sets and Dictionaries
- Python Flow Control
- Exception Handling
Module 2 : Functions and Modules
- Pass by Value and Reference
- Scope of Variables
- EFAP principle
- What are comprehensions?
- Lambda Operator
- Filter, Reduce and Map
- List comprehensions
- Set and Dictionary comprehensions
- Creating and Using Modules
- import Statement
- from…import Statement
Module 3 : Classes and Objects
- Creating Classes
- Creating and Using Objects
- Accessing Attributes
- Property Syntax
- Constructors and Destructors
- Encapsulation
- Inheritance
- super Keyword
- Checking Relationships
- issubclass and isinstance
- Overriding Methods
Module 4 : Numpy
- NumPy Numerical Types
- Data Type objects
- dtype attributes
- Slicing and Indexing
- Array comparisons
- Manipulating array shapes
- Stacking and Splitting arrays
- any(),all(), slicing, reshape()
- Manipulating array shapes
- Methods of ndarray
- Views versus copies
- ravel(),flatten(),transpose()
Module 5 : Pandas
- Pandas DataFrame
- Import Data
- Inspect Data
- Data Visualization
- DataFrame Data Types
- Indexing and selection
- Data operations in pandas
- Missing Data
- Hierarchical Indexing
- Plotting with Pandas
- Combining Datasets
- Exploratory Data Analysis
Module 6 : Data Manipulation
- Indexing Data Frames
- .loc and .iloc Accessor
- Slicing and Indexing a Series
- Filtering with Boolean Series
- Zeros and NaNs
- all and any Nonzeros
- Using map Function
- Hierarchical Indexing
- Rearranging Data
- Reshaping by Pivoting
- Transformation and Aggregation
- Grouping Data
Module 7 : MatplotLib
- Simple Plots
- Plot format String
- Subplots
- Histograms
- Logarithmic Plots
- Scatter plots
- Fill between
- Legend and Annotations
- Three Dimensional Plots
- Contour Plots
- Transformations
- Projections
Module 8 : Time Series
- Indexing Pandas Time Series
- Reading and Slicing Times
- Using a DatetimeIndex
- Reindexing the Index
- Separating and Resampling
- Rolling mean and Frequency
- Resample and Roll with it
- Manipulating Time Series
- Method chaining and Filtering
- Missing values and Interpolation
- Time Zones and Conversion
- Plotting Time Series
Module 9 : SciKitLearn Essentials
- SkiKit Learn library
- Machine learning essentials
- Supervised and Unsupervised
- Feature matrix
- Target array
- Estimator API
- Hyperparameters
- Fit method
- Predict method
- Model Selection
- Linear Regression
- Logistic Regression
Waarom SpiralTrain
SpiralTrain is specialist op het gebied van software development trainingen. Wie bieden zowel trainingen aan voor beginnende programmeurs die zich de basis van talen en tools eigen willen maken als ook trainingen voor ervaren software professionals die zich willen bekwamen in de nieuwste versie van een taal of een framework.
Onze trainingkenmerken zich door :
• Klassikale of online open roostertrainingen en andere
trainingsvormen
• Eenduidige en scherpe cursusprijzen, zonder extra kosten
• Veel trainingen met een doorlopende case study
• Trainingen die gericht zijn op certificering
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
