Course Hadoop for Big Data
Startdata en plaatsen
placeAmsterdam 17 nov. 2025 tot 19 nov. 2025Toon rooster event 17 november 2025, 09:30-16:30, Amsterdam, Dag 1 event 18 november 2025, 09:30-16:30, Amsterdam, Dag 2 event 19 november 2025, 09:30-16:30, Amsterdam, Dag 3 |
placeEindhoven 17 nov. 2025 tot 19 nov. 2025Toon rooster event 17 november 2025, 09:30-16:30, Eindhoven, Dag 1 event 18 november 2025, 09:30-16:30, Eindhoven, Dag 2 event 19 november 2025, 09:30-16:30, Eindhoven, Dag 3 |
placeHouten 17 nov. 2025 tot 19 nov. 2025Toon rooster event 17 november 2025, 09:30-16:30, Houten, Dag 1 event 18 november 2025, 09:30-16:30, Houten, Dag 2 event 19 november 2025, 09:30-16:30, Houten, Dag 3 |
computer Online: Online 17 nov. 2025 tot 19 nov. 2025Toon rooster event 17 november 2025, 09:30-16:30, Online, Dag 1 event 18 november 2025, 09:30-16:30, Online, Dag 2 event 19 november 2025, 09:30-16:30, Online, Dag 3 |
placeRotterdam 17 nov. 2025 tot 19 nov. 2025Toon rooster event 17 november 2025, 09:30-16:30, Rotterdam, Dag 1 event 18 november 2025, 09:30-16:30, Rotterdam, Dag 2 event 19 november 2025, 09:30-16:30, Rotterdam, Dag 3 |
placeZwolle 17 nov. 2025 tot 19 nov. 2025Toon rooster event 17 november 2025, 09:30-16:30, Zwolle, Dag 1 event 18 november 2025, 09:30-16:30, Zwolle, Dag 2 event 19 november 2025, 09:30-16:30, Zwolle, Dag 3 |
placeAmsterdam 19 jan. 2026 tot 21 jan. 2026Toon rooster event 19 januari 2026, 09:30-16:30, Amsterdam, Dag 1 event 20 januari 2026, 09:30-16:30, Amsterdam, Dag 2 event 21 januari 2026, 09:30-16:30, Amsterdam, Dag 3 |
placeEindhoven 19 jan. 2026 tot 21 jan. 2026Toon rooster event 19 januari 2026, 09:30-16:30, Eindhoven, Dag 1 event 20 januari 2026, 09:30-16:30, Eindhoven, Dag 2 event 21 januari 2026, 09:30-16:30, Eindhoven, Dag 3 |
placeHouten 19 jan. 2026 tot 21 jan. 2026Toon rooster event 19 januari 2026, 09:30-16:30, Houten, Dag 1 event 20 januari 2026, 09:30-16:30, Houten, Dag 2 event 21 januari 2026, 09:30-16:30, Houten, Dag 3 |
computer Online: Online 19 jan. 2026 tot 21 jan. 2026Toon rooster event 19 januari 2026, 09:30-16:30, Online, Dag 1 event 20 januari 2026, 09:30-16:30, Online, Dag 2 event 21 januari 2026, 09:30-16:30, Online, Dag 3 |
placeRotterdam 19 jan. 2026 tot 21 jan. 2026Toon rooster event 19 januari 2026, 09:30-16:30, Rotterdam, Dag 1 event 20 januari 2026, 09:30-16:30, Rotterdam, Dag 2 event 21 januari 2026, 09:30-16:30, Rotterdam, Dag 3 |
placeZwolle 19 jan. 2026 tot 21 jan. 2026Toon rooster event 19 januari 2026, 09:30-16:30, Zwolle, Dag 1 event 20 januari 2026, 09:30-16:30, Zwolle, Dag 2 event 21 januari 2026, 09:30-16:30, Zwolle, Dag 3 |
placeAmsterdam 23 mrt. 2026 tot 25 mrt. 2026Toon rooster event 23 maart 2026, 09:30-16:30, Amsterdam, Dag 1 event 24 maart 2026, 09:30-16:30, Amsterdam, Dag 2 event 25 maart 2026, 09:30-16:30, Amsterdam, Dag 3 |
placeEindhoven 23 mrt. 2026 tot 25 mrt. 2026Toon rooster event 23 maart 2026, 09:30-16:30, Eindhoven, Dag 1 event 24 maart 2026, 09:30-16:30, Eindhoven, Dag 2 event 25 maart 2026, 09:30-16:30, Eindhoven, Dag 3 |
placeHouten 23 mrt. 2026 tot 25 mrt. 2026Toon rooster event 23 maart 2026, 09:30-16:30, Houten, Dag 1 event 24 maart 2026, 09:30-16:30, Houten, Dag 2 event 25 maart 2026, 09:30-16:30, Houten, Dag 3 |
computer Online: Online 23 mrt. 2026 tot 25 mrt. 2026Toon rooster event 23 maart 2026, 09:30-16:30, Online, Dag 1 event 24 maart 2026, 09:30-16:30, Online, Dag 2 event 25 maart 2026, 09:30-16:30, Online, Dag 3 |
placeRotterdam 23 mrt. 2026 tot 25 mrt. 2026Toon rooster event 23 maart 2026, 09:30-16:30, Rotterdam, Dag 1 event 24 maart 2026, 09:30-16:30, Rotterdam, Dag 2 event 25 maart 2026, 09:30-16:30, Rotterdam, Dag 3 |
placeZwolle 23 mrt. 2026 tot 25 mrt. 2026Toon rooster event 23 maart 2026, 09:30-16:30, Zwolle, Dag 1 event 24 maart 2026, 09:30-16:30, Zwolle, Dag 2 event 25 maart 2026, 09:30-16:30, Zwolle, Dag 3 |
placeAmsterdam 18 mei. 2026 tot 20 mei. 2026Toon rooster event 18 mei 2026, 09:30-16:30, Amsterdam, Dag 1 event 19 mei 2026, 09:30-16:30, Amsterdam, Dag 2 event 20 mei 2026, 09:30-16:30, Amsterdam, Dag 3 |
placeEindhoven 18 mei. 2026 tot 20 mei. 2026Toon rooster event 18 mei 2026, 09:30-16:30, Eindhoven, Dag 1 event 19 mei 2026, 09:30-16:30, Eindhoven, Dag 2 event 20 mei 2026, 09:30-16:30, Eindhoven, Dag 3 |
Beschrijving
In the course Hadoop for Big Data participants learn how to use Apache Hadoop for the storage and processing of large amounts of data.Hadoop Architecture
In the course Hadoop for Big Data the architecture of Hadoop is explained in depth. Hadoop uses a simple programming model in a distributed environment over a cluster of computers.
HDFS
The Hadoop Distributed File System (HDFS) is used as file system within a Hadoop cluster. In the course Hadoop for Big Data HDFS in explained in detail. HDFS is a horizontal scalable file system that is stored on a cluster of servers. The data is stored in a distributed manner and the file system automatically ensures replication of data over the cluster.
M…

Veelgestelde vragen
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Hadoop Architecture
In the course Hadoop for Big Data the architecture of Hadoop is explained in depth. Hadoop uses a simple programming model in a distributed environment over a cluster of computers.
HDFS
The Hadoop Distributed File System (HDFS) is used as file system within a Hadoop cluster. In the course Hadoop for Big Data HDFS in explained in detail. HDFS is a horizontal scalable file system that is stored on a cluster of servers. The data is stored in a distributed manner and the file system automatically ensures replication of data over the cluster.
MapReduce
An important algorithm for the processing of data is the MapReduce algorithm and this is given extensive attention.
Utilities
Finally attention is paid to tools and utilities that are often used in combination with Hadoop such as Zookeeper, Scoop, Ozie and Pig.
Audience Course Hadoop for Big Data
The course Hadoop for Big Data is intended for developers, data analysts and others who want to learn how to process data with Hadoop.
Prerequisites training Hadoop for Big Data
To participate in this course prior knowledge of programming in Java and databases is beneficial for the understanding. Prior knowledge of Java or Hadoop is not necessary.
Realization Course Hadoop for Big Data
The theory is treated on the basis of presentations. Illustrative demos are used to clarify the covered concepts. There is ample opportunity to practice and theory and practice are interchanged. The course times are from 9.30 to 16.30.
Official Certificate Course Hadoop for Big Data
Participants receive an official certificate Hadoop for Big Data after successful completion of the course.
Modules
Module 1 : Hadoop Intro
- Big Data Handling
- No SQL
- Comparison to Relational DB
- Hadoop Eco-System
- Hadoop Distributions
- Pseudo-Distributed Installation
- Namenode Safemode
- Namenode High Availability
- Secondary Namenode
- Hadoop Filesystem Shell
Module 2 : Java API
- Create via Put method
- Read via Get method
- Update via Put method
- Delete via Delete method
- Create Table
- Drop Table
- Scan API
- Scan Caching
- Scan Batching
- Filters
Module 3 : HDFS
- Hadoop Environment
- Hadoop Stack
- Hadoop Yarn
- Distributed File System
- HDFS Architecture
- Parallel Operations
- Working with Partitions
- RDD Partitions
- HDFS Data Locality
- DAG (Direct Acyclic Graph)
Module 4 : Hbase Key Design
- Storage Model
- Querying Granularity
- Table Design
- Tall-Narrow Tables
- Flat-Wide Tables
- Column Family
- Column Qualifier
- Storage Unit
- Querying Data by Timestamp
- Querying Data by Row-ID
- Types of Keys and Values
- SQL Access
Module 5 : MapReduce
- MapReduce Model
- MapReduce Theory
- YARN and MapReduce 2.0 Daemons
- MapReduce on YARN single node
- MapReduce framework
- Tool and ToolRunner
- GenericOptionsParser
- Running MapReduce Locally
- Running MapReduce on Cluster
- Packaging MapReduce Jobs
- MapReduce CLASSPATH
- Decomposing into MapReduce
Module 6 : Submitting Jobs
- MapReduce Job
- Using JobControl class
- Joining data-sets
- User Defined Functions
- Logs and Web UI
- Input and Output Formats
- Anatomy of Mappers
- Reducers and Combiners
- Partitioners and Counters
- Speculative Execution
- Distributed Cache
- YARN Components
Module 7 : Hadoop Streaming
- Implement a Streaming Job
- Contrast with Java Code
- Create counts in Streaming App
- Text Processing Use Case
- Key Value Pairs
- $yarn command
- Using Pipes
Module 8 : Utilities
- ZooKeeper
- Scoop
- Introduce Oozie
- Deploy and Run Oozie Workflow
- Pig Overview
- Execution Modes
- Developing Pig Script
Module 9 : Hive
- Hive Concepts
- Hive Clients
- Table Creation and Deletion
- Loading Data into Hive
- Partitioning
- Bucketing
- Joins
Waarom SpiralTrain
SpiralTrain is specialist op het gebied van software development trainingen. Wie bieden zowel trainingen aan voor beginnende programmeurs die zich de basis van talen en tools eigen willen maken als ook trainingen voor ervaren software professionals die zich willen bekwamen in de nieuwste versie van een taal of een framework.
Onze trainingkenmerken zich door :
• Klassikale of online open roostertrainingen en andere
trainingsvormen
• Eenduidige en scherpe cursusprijzen, zonder extra kosten
• Veel trainingen met een doorlopende case study
• Trainingen die gericht zijn op certificering
Blijf op de hoogte van nieuwe ervaringen
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.