Machine Learning with Python

Tijdsduur
Locatie
Op locatie, Online
Startdatum en plaats

Machine Learning with Python

SpiralTrain
Logo van SpiralTrain
Opleiderscore: starstarstarstarstar_half 8,5 SpiralTrain heeft een gemiddelde beoordeling van 8,5 (uit 50 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
placeAmsterdam
23 feb. 2026 tot 26 feb. 2026
Toon rooster
event 23 februari 2026, 09:30-16:30, Amsterdam, Dag 1
event 24 februari 2026, 09:30-16:30, Amsterdam, Dag 2
event 25 februari 2026, 09:30-16:30, Amsterdam, Dag 3
event 26 februari 2026, 09:30-16:30, Amsterdam, Dag 4
placeEindhoven
23 feb. 2026 tot 26 feb. 2026
Toon rooster
event 23 februari 2026, 09:30-16:30, Eindhoven, Dag 1
event 24 februari 2026, 09:30-16:30, Eindhoven, Dag 2
event 25 februari 2026, 09:30-16:30, Eindhoven, Dag 3
event 26 februari 2026, 09:30-16:30, Eindhoven, Dag 4
placeHouten
23 feb. 2026 tot 26 feb. 2026
Toon rooster
event 23 februari 2026, 09:30-16:30, Houten, Dag 1
event 24 februari 2026, 09:30-16:30, Houten, Dag 2
event 25 februari 2026, 09:30-16:30, Houten, Dag 3
event 26 februari 2026, 09:30-16:30, Houten, Dag 4
computer Online: Online
23 feb. 2026 tot 26 feb. 2026
Toon rooster
event 23 februari 2026, 09:30-16:30, Online, Dag 1
event 24 februari 2026, 09:30-16:30, Online, Dag 2
event 25 februari 2026, 09:30-16:30, Online, Dag 3
event 26 februari 2026, 09:30-16:30, Online, Dag 4
placeRotterdam
23 feb. 2026 tot 26 feb. 2026
Toon rooster
event 23 februari 2026, 09:30-16:30, Rotterdam, Dag 1
event 24 februari 2026, 09:30-16:30, Rotterdam, Dag 2
event 25 februari 2026, 09:30-16:30, Rotterdam, Dag 3
event 26 februari 2026, 09:30-16:30, Rotterdam, Dag 4
placeZwolle
23 feb. 2026 tot 26 feb. 2026
Toon rooster
event 23 februari 2026, 09:30-16:30, Zwolle, Dag 1
event 24 februari 2026, 09:30-16:30, Zwolle, Dag 2
event 25 februari 2026, 09:30-16:30, Zwolle, Dag 3
event 26 februari 2026, 09:30-16:30, Zwolle, Dag 4
placeAmsterdam
27 apr. 2026 tot 30 apr. 2026
Toon rooster
event 27 april 2026, 09:30-16:30, Amsterdam, Dag 1
event 28 april 2026, 09:30-16:30, Amsterdam, Dag 2
event 29 april 2026, 09:30-16:30, Amsterdam, Dag 3
event 30 april 2026, 09:30-16:30, Amsterdam, Dag 4
placeEindhoven
27 apr. 2026 tot 30 apr. 2026
Toon rooster
event 27 april 2026, 09:30-16:30, Eindhoven, Dag 1
event 28 april 2026, 09:30-16:30, Eindhoven, Dag 2
event 29 april 2026, 09:30-16:30, Eindhoven, Dag 3
event 30 april 2026, 09:30-16:30, Eindhoven, Dag 4
placeHouten
27 apr. 2026 tot 30 apr. 2026
Toon rooster
event 27 april 2026, 09:30-16:30, Houten, Dag 1
event 28 april 2026, 09:30-16:30, Houten, Dag 2
event 29 april 2026, 09:30-16:30, Houten, Dag 3
event 30 april 2026, 09:30-16:30, Houten, Dag 4
computer Online: Online
27 apr. 2026 tot 30 apr. 2026
Toon rooster
event 27 april 2026, 09:30-16:30, Online, Dag 1
event 28 april 2026, 09:30-16:30, Online, Dag 2
event 29 april 2026, 09:30-16:30, Online, Dag 3
event 30 april 2026, 09:30-16:30, Online, Dag 4
placeRotterdam
27 apr. 2026 tot 30 apr. 2026
Toon rooster
event 27 april 2026, 09:30-16:30, Rotterdam, Dag 1
event 28 april 2026, 09:30-16:30, Rotterdam, Dag 2
event 29 april 2026, 09:30-16:30, Rotterdam, Dag 3
event 30 april 2026, 09:30-16:30, Rotterdam, Dag 4
placeZwolle
27 apr. 2026 tot 30 apr. 2026
Toon rooster
event 27 april 2026, 09:30-16:30, Zwolle, Dag 1
event 28 april 2026, 09:30-16:30, Zwolle, Dag 2
event 29 april 2026, 09:30-16:30, Zwolle, Dag 3
event 30 april 2026, 09:30-16:30, Zwolle, Dag 4
placeAmsterdam
29 jun. 2026 tot 2 jul. 2026
Toon rooster
event 29 juni 2026, 09:30-16:30, Amsterdam, Dag 1
event 30 juni 2026, 09:30-16:30, Amsterdam, Dag 2
event 1 juli 2026, 09:30-16:30, Amsterdam, Dag 3
event 2 juli 2026, 09:30-16:30, Amsterdam, Dag 4
placeEindhoven
29 jun. 2026 tot 2 jul. 2026
Toon rooster
event 29 juni 2026, 09:30-16:30, Eindhoven, Dag 1
event 30 juni 2026, 09:30-16:30, Eindhoven, Dag 2
event 1 juli 2026, 09:30-16:30, Eindhoven, Dag 3
event 2 juli 2026, 09:30-16:30, Eindhoven, Dag 4
placeHouten
29 jun. 2026 tot 2 jul. 2026
Toon rooster
event 29 juni 2026, 09:30-16:30, Houten, Dag 1
event 30 juni 2026, 09:30-16:30, Houten, Dag 2
event 1 juli 2026, 09:30-16:30, Houten, Dag 3
event 2 juli 2026, 09:30-16:30, Houten, Dag 4
computer Online: Online
29 jun. 2026 tot 2 jul. 2026
Toon rooster
event 29 juni 2026, 09:30-16:30, Online, Dag 1
event 30 juni 2026, 09:30-16:30, Online, Dag 2
event 1 juli 2026, 09:30-16:30, Online, Dag 3
event 2 juli 2026, 09:30-16:30, Online, Dag 4
placeRotterdam
29 jun. 2026 tot 2 jul. 2026
Toon rooster
event 29 juni 2026, 09:30-16:30, Rotterdam, Dag 1
event 30 juni 2026, 09:30-16:30, Rotterdam, Dag 2
event 1 juli 2026, 09:30-16:30, Rotterdam, Dag 3
event 2 juli 2026, 09:30-16:30, Rotterdam, Dag 4
placeZwolle
29 jun. 2026 tot 2 jul. 2026
Toon rooster
event 29 juni 2026, 09:30-16:30, Zwolle, Dag 1
event 30 juni 2026, 09:30-16:30, Zwolle, Dag 2
event 1 juli 2026, 09:30-16:30, Zwolle, Dag 3
event 2 juli 2026, 09:30-16:30, Zwolle, Dag 4
placeAmsterdam
24 aug. 2026 tot 27 aug. 2026
Toon rooster
event 24 augustus 2026, 09:30-16:30, Amsterdam, Dag 1
event 25 augustus 2026, 09:30-16:30, Amsterdam, Dag 2
event 26 augustus 2026, 09:30-16:30, Amsterdam, Dag 3
event 27 augustus 2026, 09:30-16:30, Amsterdam, Dag 4
placeEindhoven
24 aug. 2026 tot 27 aug. 2026
Toon rooster
event 24 augustus 2026, 09:30-16:30, Eindhoven, Dag 1
event 25 augustus 2026, 09:30-16:30, Eindhoven, Dag 2
event 26 augustus 2026, 09:30-16:30, Eindhoven, Dag 3
event 27 augustus 2026, 09:30-16:30, Eindhoven, Dag 4
Beschrijving
In the course Machine Learning with Python participants learn how to implement machine learning algorithms using Python and the Scikit-learn library.

Machine Learning Intro

The Machine Learning with Python course starts with an overview of the basic concepts of Machine Learning in which models are made on the basis of supplied data. The difference is explained between Supervised and Unsupervised Learning.

Scikit-learn Library

Subsequently the libraries that form the foundation behind Machine Learning with Scikit-learn such as Numpy, Pandas, MatPlotLib and Seaborn are discussed. In the basic architecture of Scikit-learn, the data is split into a feature matrix and a target array. Also treated…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Machine learning, Microsoft SQL Server, Big Data, MySQL en Datavisualisatie.

In the course Machine Learning with Python participants learn how to implement machine learning algorithms using Python and the Scikit-learn library.

Machine Learning Intro

The Machine Learning with Python course starts with an overview of the basic concepts of Machine Learning in which models are made on the basis of supplied data. The difference is explained between Supervised and Unsupervised Learning.

Scikit-learn Library

Subsequently the libraries that form the foundation behind Machine Learning with Scikit-learn such as Numpy, Pandas, MatPlotLib and Seaborn are discussed. In the basic architecture of Scikit-learn, the data is split into a feature matrix and a target array. Also treated is how a model is trained with a training set and then compared to a test set with the Estimator API.

Feature Handling

The course Machine Learning with Python also includes Feature Engineering. This discusses how to deal with categorical features, text features, image features and derived features. And the use of features pipelines is also explained.

Regressions

After a treatment of the Naive Bayes theorem with Naive Bayes classifiers and the models based on them, Linear and Logistic regression are discussed. Specialist versions such as Polynomial Regression, Ridge Regression and Lasso Regularization are also covered.

Classifications

Then the course Machine Learning with Python pays attention to different variants of Machine Learning algorithms that are based on classification. Support Vector Machines and Decision Trees are discussed here.

Unsupervised Learning

Finally the course Machine Learning with Python deals with Principal Component Analysis as an example of an unsupervised learning algorithm. Dimensionality Reduction is then treated as well.

Audience Course Machine Learning with Python

The course Machine Learning with Python is intended for data analysts who want to use Python and the Python libraries in Data Analysis projects.

Prerequisites training Machine Learning with Python

To participate in this course knowledge of and experience with any programming language or package such as SPSS, Matlab or VBA is desirable. The course starts with a discussion of the principles of the Python programming language.

Realization Course Machine Learning with Python

The theory is discussed on the basis of presentation slides. Illustrative demos clarify the concepts. The theory is interchanged with exercises. The Anaconda distribution with Jupyter notebooks is used as a development environment. Course times are from 9:30 to 16:30.

Official Certificate Machine Learning with Python

After successful completion of the course, participants receive an official Machine Learning certificate with Python.

Modules

Module 1 : Intro Machine Learning

  • What is Machine Learning?
  • Building Models of Data
  • Model Based Learning
  • Tunable Parameters
  • Supervised Learning
  • Labeling Data
  • Discrete Labels
  • Continuous Labels
  • Classification and Regression
  • Unsupervised Learning
  • Data Speaks for Itself
  • Clustering and Dimensionality Reduction

Module 2 : Numpy and Pandas

  • Numpy Arrays
  • NumPy Data Types
  • Pandas Data Frames
  • Inspect Data
  • Operations on Data
  • Missing Data
  • Pandas Series
  • Pandas Indexes
  • Time Series
  • MatplotLib
  • Plotting with Pandas
  • Seaborn Library

Module 3 : Scikit-learn Library

  • Data Representation
  • Estimator API
  • Features Matrix
  • Target Array
  • Seaborn Visualization
  • Model Classes
  • Choosing Hyperparameters
  • Model Validation
  • Fit and Predict Method
  • Label Predicting
  • Training and Testing Set
  • Transform Method

Module 4 : Feature Engineering

  • Categorical Features
  • Vectorization
  • Text and Image Features
  • Derived Features
  • Adding Columns
  • Handling Missing Data
  • Imputation of Missing Data
  • Feature Pipelines
  • Polynomial Basis Functions
  • Gaussian Basis Functions
  • Regularization

Module 5 : Naive Bayes

  • Naive Bayes Classifiers
  • Applicability
  • High Dimensional Datasets
  • Bayes’s Theorem
  • Generative Models
  • Gaussian Naive Bayes
  • Probabilistic Classification
  • predict_proba Method
  • Multinomial Naive Bayes
  • Confusion Matrix
  • When to Use Naive Bayes

Module 6 : Linear Regression

  • Slope and Intercept
  • LinearRegression Estimator
  • coef_ and intercept_ Parameter
  • Multidimensional Linear Models
  • Basis Function Regression
  • Polynomial Regression
  • PolynomialFeatures Transformer
  • Gaussian Basis Functions
  • Overfitting
  • Ridge Regression
  • Lasso Regularization

Module 7 : Support Vector Machines

  • Discriminative Classification
  • Maximizing the Margin
  • Linear Kernel
  • C Parameter
  • Support Vectors
  • SVM Visualization
  • Kernel SVM
  • Radial Basis Function
  • Kernel Transformation
  • Kernel Trick
  • Softening Margins

Module 8 : Decision Trees

  • Ensemble Learner
  • Creating Decision Trees
  • DecisionTree Classifier
  • Overfitting Decision Trees
  • Ensembles of Estimator
  • Random Forests
  • Parallel Estimators
  • Bagging Classifier
  • Random Forest Regression
  • RandomForest Regressor
  • Non Parametric Model

Module 9 : Principal Components

  • PCA Unsupervised Learning
  • Learn about Relationships
  • Principal Axes
  • Demonstration Data
  • Affine Transformation
  • Components
  • Explained Variance
  • Dimensionality Reduction
  • Inverse Transformation
  • Explained Variance Ratio
  • PCA as Noise Filtering

Waarom SpiralTrain

SpiralTrain is specialist op het gebied van software development trainingen. Wie bieden zowel trainingen aan voor beginnende programmeurs die zich de basis van talen en tools eigen willen maken als ook trainingen voor ervaren software professionals die zich willen bekwamen in de nieuwste versie van een taal of een framework.

Onze trainingkenmerken zich door :

• Klassikale of online open roostertrainingen en andere trainingsvormen
• Eenduidige en scherpe cursusprijzen, zonder extra kosten
• Veel trainingen met een doorlopende case study
• Trainingen die gericht zijn op certificering

Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
infoEr is een telefoonnummer vereist om deze informatieaanvraag in behandeling te nemen. (optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)

Aanmelden voor nieuwsbrief

We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.