Machine Learning with Python
placeAmsterdam 23 feb. 2026 tot 26 feb. 2026Toon rooster event 23 februari 2026, 09:30-16:30, Amsterdam, Dag 1 event 24 februari 2026, 09:30-16:30, Amsterdam, Dag 2 event 25 februari 2026, 09:30-16:30, Amsterdam, Dag 3 event 26 februari 2026, 09:30-16:30, Amsterdam, Dag 4 |
placeEindhoven 23 feb. 2026 tot 26 feb. 2026Toon rooster event 23 februari 2026, 09:30-16:30, Eindhoven, Dag 1 event 24 februari 2026, 09:30-16:30, Eindhoven, Dag 2 event 25 februari 2026, 09:30-16:30, Eindhoven, Dag 3 event 26 februari 2026, 09:30-16:30, Eindhoven, Dag 4 |
placeHouten 23 feb. 2026 tot 26 feb. 2026Toon rooster event 23 februari 2026, 09:30-16:30, Houten, Dag 1 event 24 februari 2026, 09:30-16:30, Houten, Dag 2 event 25 februari 2026, 09:30-16:30, Houten, Dag 3 event 26 februari 2026, 09:30-16:30, Houten, Dag 4 |
computer Online: Online 23 feb. 2026 tot 26 feb. 2026Toon rooster event 23 februari 2026, 09:30-16:30, Online, Dag 1 event 24 februari 2026, 09:30-16:30, Online, Dag 2 event 25 februari 2026, 09:30-16:30, Online, Dag 3 event 26 februari 2026, 09:30-16:30, Online, Dag 4 |
placeRotterdam 23 feb. 2026 tot 26 feb. 2026Toon rooster event 23 februari 2026, 09:30-16:30, Rotterdam, Dag 1 event 24 februari 2026, 09:30-16:30, Rotterdam, Dag 2 event 25 februari 2026, 09:30-16:30, Rotterdam, Dag 3 event 26 februari 2026, 09:30-16:30, Rotterdam, Dag 4 |
placeZwolle 23 feb. 2026 tot 26 feb. 2026Toon rooster event 23 februari 2026, 09:30-16:30, Zwolle, Dag 1 event 24 februari 2026, 09:30-16:30, Zwolle, Dag 2 event 25 februari 2026, 09:30-16:30, Zwolle, Dag 3 event 26 februari 2026, 09:30-16:30, Zwolle, Dag 4 |
placeAmsterdam 27 apr. 2026 tot 30 apr. 2026Toon rooster event 27 april 2026, 09:30-16:30, Amsterdam, Dag 1 event 28 april 2026, 09:30-16:30, Amsterdam, Dag 2 event 29 april 2026, 09:30-16:30, Amsterdam, Dag 3 event 30 april 2026, 09:30-16:30, Amsterdam, Dag 4 |
placeEindhoven 27 apr. 2026 tot 30 apr. 2026Toon rooster event 27 april 2026, 09:30-16:30, Eindhoven, Dag 1 event 28 april 2026, 09:30-16:30, Eindhoven, Dag 2 event 29 april 2026, 09:30-16:30, Eindhoven, Dag 3 event 30 april 2026, 09:30-16:30, Eindhoven, Dag 4 |
placeHouten 27 apr. 2026 tot 30 apr. 2026Toon rooster event 27 april 2026, 09:30-16:30, Houten, Dag 1 event 28 april 2026, 09:30-16:30, Houten, Dag 2 event 29 april 2026, 09:30-16:30, Houten, Dag 3 event 30 april 2026, 09:30-16:30, Houten, Dag 4 |
computer Online: Online 27 apr. 2026 tot 30 apr. 2026Toon rooster event 27 april 2026, 09:30-16:30, Online, Dag 1 event 28 april 2026, 09:30-16:30, Online, Dag 2 event 29 april 2026, 09:30-16:30, Online, Dag 3 event 30 april 2026, 09:30-16:30, Online, Dag 4 |
placeRotterdam 27 apr. 2026 tot 30 apr. 2026Toon rooster event 27 april 2026, 09:30-16:30, Rotterdam, Dag 1 event 28 april 2026, 09:30-16:30, Rotterdam, Dag 2 event 29 april 2026, 09:30-16:30, Rotterdam, Dag 3 event 30 april 2026, 09:30-16:30, Rotterdam, Dag 4 |
placeZwolle 27 apr. 2026 tot 30 apr. 2026Toon rooster event 27 april 2026, 09:30-16:30, Zwolle, Dag 1 event 28 april 2026, 09:30-16:30, Zwolle, Dag 2 event 29 april 2026, 09:30-16:30, Zwolle, Dag 3 event 30 april 2026, 09:30-16:30, Zwolle, Dag 4 |
placeAmsterdam 29 jun. 2026 tot 2 jul. 2026Toon rooster event 29 juni 2026, 09:30-16:30, Amsterdam, Dag 1 event 30 juni 2026, 09:30-16:30, Amsterdam, Dag 2 event 1 juli 2026, 09:30-16:30, Amsterdam, Dag 3 event 2 juli 2026, 09:30-16:30, Amsterdam, Dag 4 |
placeEindhoven 29 jun. 2026 tot 2 jul. 2026Toon rooster event 29 juni 2026, 09:30-16:30, Eindhoven, Dag 1 event 30 juni 2026, 09:30-16:30, Eindhoven, Dag 2 event 1 juli 2026, 09:30-16:30, Eindhoven, Dag 3 event 2 juli 2026, 09:30-16:30, Eindhoven, Dag 4 |
placeHouten 29 jun. 2026 tot 2 jul. 2026Toon rooster event 29 juni 2026, 09:30-16:30, Houten, Dag 1 event 30 juni 2026, 09:30-16:30, Houten, Dag 2 event 1 juli 2026, 09:30-16:30, Houten, Dag 3 event 2 juli 2026, 09:30-16:30, Houten, Dag 4 |
computer Online: Online 29 jun. 2026 tot 2 jul. 2026Toon rooster event 29 juni 2026, 09:30-16:30, Online, Dag 1 event 30 juni 2026, 09:30-16:30, Online, Dag 2 event 1 juli 2026, 09:30-16:30, Online, Dag 3 event 2 juli 2026, 09:30-16:30, Online, Dag 4 |
placeRotterdam 29 jun. 2026 tot 2 jul. 2026Toon rooster event 29 juni 2026, 09:30-16:30, Rotterdam, Dag 1 event 30 juni 2026, 09:30-16:30, Rotterdam, Dag 2 event 1 juli 2026, 09:30-16:30, Rotterdam, Dag 3 event 2 juli 2026, 09:30-16:30, Rotterdam, Dag 4 |
placeZwolle 29 jun. 2026 tot 2 jul. 2026Toon rooster event 29 juni 2026, 09:30-16:30, Zwolle, Dag 1 event 30 juni 2026, 09:30-16:30, Zwolle, Dag 2 event 1 juli 2026, 09:30-16:30, Zwolle, Dag 3 event 2 juli 2026, 09:30-16:30, Zwolle, Dag 4 |
placeAmsterdam 24 aug. 2026 tot 27 aug. 2026Toon rooster event 24 augustus 2026, 09:30-16:30, Amsterdam, Dag 1 event 25 augustus 2026, 09:30-16:30, Amsterdam, Dag 2 event 26 augustus 2026, 09:30-16:30, Amsterdam, Dag 3 event 27 augustus 2026, 09:30-16:30, Amsterdam, Dag 4 |
placeEindhoven 24 aug. 2026 tot 27 aug. 2026Toon rooster event 24 augustus 2026, 09:30-16:30, Eindhoven, Dag 1 event 25 augustus 2026, 09:30-16:30, Eindhoven, Dag 2 event 26 augustus 2026, 09:30-16:30, Eindhoven, Dag 3 event 27 augustus 2026, 09:30-16:30, Eindhoven, Dag 4 |
Machine Learning Intro
The Machine Learning with Python course starts with an overview of the basic concepts of Machine Learning in which models are made on the basis of supplied data. The difference is explained between Supervised and Unsupervised Learning.
Scikit-learn Library
Subsequently the libraries that form the foundation behind Machine Learning with Scikit-learn such as Numpy, Pandas, MatPlotLib and Seaborn are discussed. In the basic architecture of Scikit-learn, the data is split into a feature matrix and a target array. Also treated…

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Machine Learning Intro
The Machine Learning with Python course starts with an overview of the basic concepts of Machine Learning in which models are made on the basis of supplied data. The difference is explained between Supervised and Unsupervised Learning.
Scikit-learn Library
Subsequently the libraries that form the foundation behind Machine Learning with Scikit-learn such as Numpy, Pandas, MatPlotLib and Seaborn are discussed. In the basic architecture of Scikit-learn, the data is split into a feature matrix and a target array. Also treated is how a model is trained with a training set and then compared to a test set with the Estimator API.
Feature Handling
The course Machine Learning with Python also includes Feature Engineering. This discusses how to deal with categorical features, text features, image features and derived features. And the use of features pipelines is also explained.
Regressions
After a treatment of the Naive Bayes theorem with Naive Bayes classifiers and the models based on them, Linear and Logistic regression are discussed. Specialist versions such as Polynomial Regression, Ridge Regression and Lasso Regularization are also covered.
Classifications
Then the course Machine Learning with Python pays attention to different variants of Machine Learning algorithms that are based on classification. Support Vector Machines and Decision Trees are discussed here.
Unsupervised Learning
Finally the course Machine Learning with Python deals with Principal Component Analysis as an example of an unsupervised learning algorithm. Dimensionality Reduction is then treated as well.
Audience Course Machine Learning with Python
The course Machine Learning with Python is intended for data analysts who want to use Python and the Python libraries in Data Analysis projects.
Prerequisites training Machine Learning with Python
To participate in this course knowledge of and experience with any programming language or package such as SPSS, Matlab or VBA is desirable. The course starts with a discussion of the principles of the Python programming language.
Realization Course Machine Learning with Python
The theory is discussed on the basis of presentation slides. Illustrative demos clarify the concepts. The theory is interchanged with exercises. The Anaconda distribution with Jupyter notebooks is used as a development environment. Course times are from 9:30 to 16:30.
Official Certificate Machine Learning with Python
After successful completion of the course, participants receive an official Machine Learning certificate with Python.
Modules
Module 1 : Intro Machine Learning
- What is Machine Learning?
- Building Models of Data
- Model Based Learning
- Tunable Parameters
- Supervised Learning
- Labeling Data
- Discrete Labels
- Continuous Labels
- Classification and Regression
- Unsupervised Learning
- Data Speaks for Itself
- Clustering and Dimensionality Reduction
Module 2 : Numpy and Pandas
- Numpy Arrays
- NumPy Data Types
- Pandas Data Frames
- Inspect Data
- Operations on Data
- Missing Data
- Pandas Series
- Pandas Indexes
- Time Series
- MatplotLib
- Plotting with Pandas
- Seaborn Library
Module 3 : Scikit-learn Library
- Data Representation
- Estimator API
- Features Matrix
- Target Array
- Seaborn Visualization
- Model Classes
- Choosing Hyperparameters
- Model Validation
- Fit and Predict Method
- Label Predicting
- Training and Testing Set
- Transform Method
Module 4 : Feature Engineering
- Categorical Features
- Vectorization
- Text and Image Features
- Derived Features
- Adding Columns
- Handling Missing Data
- Imputation of Missing Data
- Feature Pipelines
- Polynomial Basis Functions
- Gaussian Basis Functions
- Regularization
Module 5 : Naive Bayes
- Naive Bayes Classifiers
- Applicability
- High Dimensional Datasets
- Bayes’s Theorem
- Generative Models
- Gaussian Naive Bayes
- Probabilistic Classification
- predict_proba Method
- Multinomial Naive Bayes
- Confusion Matrix
- When to Use Naive Bayes
Module 6 : Linear Regression
- Slope and Intercept
- LinearRegression Estimator
- coef_ and intercept_ Parameter
- Multidimensional Linear Models
- Basis Function Regression
- Polynomial Regression
- PolynomialFeatures Transformer
- Gaussian Basis Functions
- Overfitting
- Ridge Regression
- Lasso Regularization
Module 7 : Support Vector Machines
- Discriminative Classification
- Maximizing the Margin
- Linear Kernel
- C Parameter
- Support Vectors
- SVM Visualization
- Kernel SVM
- Radial Basis Function
- Kernel Transformation
- Kernel Trick
- Softening Margins
Module 8 : Decision Trees
- Ensemble Learner
- Creating Decision Trees
- DecisionTree Classifier
- Overfitting Decision Trees
- Ensembles of Estimator
- Random Forests
- Parallel Estimators
- Bagging Classifier
- Random Forest Regression
- RandomForest Regressor
- Non Parametric Model
Module 9 : Principal Components
- PCA Unsupervised Learning
- Learn about Relationships
- Principal Axes
- Demonstration Data
- Affine Transformation
- Components
- Explained Variance
- Dimensionality Reduction
- Inverse Transformation
- Explained Variance Ratio
- PCA as Noise Filtering
Waarom SpiralTrain
SpiralTrain is specialist op het gebied van software development trainingen. Wie bieden zowel trainingen aan voor beginnende programmeurs die zich de basis van talen en tools eigen willen maken als ook trainingen voor ervaren software professionals die zich willen bekwamen in de nieuwste versie van een taal of een framework.
Onze trainingkenmerken zich door :
• Klassikale of online open roostertrainingen en andere
trainingsvormen
• Eenduidige en scherpe cursusprijzen, zonder extra kosten
• Veel trainingen met een doorlopende case study
• Trainingen die gericht zijn op certificering
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
